Effect of Material Properties on the Mechanical Performance of Nitinol Esophageal Stent: Finite Element Analysis

Article Preview

Abstract:

Stent placement has been a main approach to treat gastrointestinal diseases during past decade. Nitinol superelastic stents have been considered as a solution to such difficulties as restenosis after implantation, low twisting ability, inadequate radial mechanical strength and inappropriate dynamic behaviors associated with the ducts. In this paper, effects of Af temperatures on mechanical performance of z-shaped Nitinol wire stent under crimping test for clinical applications are investigated by finite element simulation. Having 60% crimping and high radial resistive strength, favorable superelastic behaviors are attained at Af temperature of 22°C. The performance of the stent is seen to be drastically different with a mere change of 1° in the segments angle.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

9-17

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hameed, H. Khan, R. Din, J. Khan, A. Rehman, M. Rashid, Self-Expandable metal stents in palliation of malignant esophageal obstruction. Gomal J. Med. Sci, 8 (2010) 39-43.

Google Scholar

[2] D. Renteln, B. Walz, B. Riecken, T. Kayser, K. Caca, Endoscopic management of acute esophageal dissection by using a covered self-expanding metal stent, Gastro. Endoscopy 69 (2009) 577-580.

DOI: 10.1016/j.gie.2008.04.038

Google Scholar

[3] D. Stoeckel, A.R. Pelton, T. Duerig, Self-expanding Nitinol stents: material and design considerations. Eur. Radio, 14 (2004) 292–301.

DOI: 10.1007/s00330-003-2022-5

Google Scholar

[4] T.W. Duerig, D.E. Tolomeo, M. Wholey, An overview of superelastic stent Design. Min. Invas. Ther and Allied Technol, 9 (3/4) (2000) 235–246.

DOI: 10.3109/13645700009169654

Google Scholar

[5] B. Patrick, B.S. Snowhill, L.N. John, L.S. Randall, H.S. Frederick, Characterization of Radial Forces in Z Stents. Inves. Radiology, 36 (9) (2001) 521–530.

Google Scholar

[6] C. Kleinstreuer, Z. Li, C.A. Basciano, S. Seelecke, M.A. Farber, Computational mechanics of Nitinol stent grafts. J. Biomech, 41 (2008) 2370–2378.

DOI: 10.1016/j.jbiomech.2008.05.032

Google Scholar

[7] K. Koop, D. Lootz, C. Kranz, C. Momma, B. Becher and M. Kieckbusch, Stent Material Ni tinol – Determination of Characteristics and Component Simulation Using the Finite Element Method, Prog. Biomed. Res, 6 (3) (2001) 237–245.

Google Scholar

[8] K.W.K. Yeung, K.M.C. Cheung, W.W. Lu, C.Y. Chung, Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. Eng. A, 383 (2004) 213–218.

DOI: 10.1016/j.msea.2004.05.063

Google Scholar

[9] M. Patel, D. Plumley and R. Bouthot, ASM Material and Process Conference and For Medical Devices Exposition (MPMD) Boston, MA November, (2005) 1-8.

Google Scholar

[10] A.R. Pelton, T. Duerig and D. Stockel, A guide to shape memory and superelasticity in Nitinol medical devices, Min. Invas. Ther and Allied Technol, 13 (4) (2004) 218-221.

DOI: 10.1080/13645700410017236

Google Scholar

[11] X. Liu, Y. Wang, D. Yang, M. Qi, The effect of ageing treatment on shape-setting and superelasticity of a Nitinol stent, Mater. Charact, 59 (2008) 402–406.

DOI: 10.1016/j.matchar.2007.02.007

Google Scholar

[12] E. Henderson, D.H. Nash, W.M. Dempster, On the experimental testing of fine Nitinol wires for medical devices, J. Mech.Behav. Biomed. Mater, 4 (2011) 261-268.

DOI: 10.1016/j.jmbbm.2010.10.004

Google Scholar

[13] Y. Liu, P. Galvin, for pseudoelasticity in near-equiatomic NiTi shape memory alloys, Acta Mater, 45 (11) (1997) 4431–4439.

DOI: 10.1016/s1359-6454(97)00144-4

Google Scholar

[14] A.R. Pelton, J. DiCello, S. Miyazaki, Optimization of processing and properties of medical grade Nitinol wire, Min. Invas. Ther and Allied Technol, 9 (1) (2000) 107–108.

DOI: 10.3109/13645700009063057

Google Scholar

[15] K. Otsuka, T. Kakeshita, Science and technology of shape memory alloys: new developments, MRS Bull, 27 (2002) 91–98.

DOI: 10.1557/mrs2002.43

Google Scholar

[16] J. Khalil-Allafi, G. Eggeler, A. Dlouhy, W. Schmahl, C. Somsen, on the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy, Mater. Sci. Eng. A, 378 (2004) 148–151.

DOI: 10.1016/j.msea.2003.10.335

Google Scholar

[17] G. Silber, M. Alizadeh, A. Aghajani, Finite element analysis for the design of self-expandable Nitinol stent in an artery. I. J. Energ. Tech, 2 (19) (2010) 1–7.

Google Scholar

[18] M. De. Beule, S.V. Cauter, P. Mortier, D.V. Loo, R.V. Impec, P. Verdonck, B. Verhegghe, Virtual optimization of self-expandable braided wire stents , Med. Eng. Phys, 31 (2009) 448–453.

DOI: 10.1016/j.medengphy.2008.11.008

Google Scholar

[19] F.D. Whitcher, Simulation of in vivo loading conditions of Nitinol vascular stent structures, Comput. Struct, 64 (5-6) (1997) 1005-1011.

DOI: 10.1016/s0045-7949(97)00014-x

Google Scholar

[20] L. Petrini, F. Migliavacca, P. Massarotti, S. Schievano, G. Dubini, F. Auricchio, Computational studies of shape memory alloy behavior in biomedical applications, J. Biomech.Eng, 127 (2005) 716-725.

DOI: 10.1115/1.1934203

Google Scholar

[21] P. Terriault, V. Brailovski, R .Gallo, Finite element modeling of a progressively expanding shape memory stent, J. Biomech, 39 (15) (2006) 2837-2844.

DOI: 10.1016/j.jbiomech.2005.09.018

Google Scholar

[22] F. Auricchio, M. Conti, M.De. Beule, G.De. Santis, B. Verhegghe, Carotid artery stenting simulation: From patient-specific images to finite element analysis, Med. Eng. Phys, 33 (2011) 281-289.

DOI: 10.1016/j.medengphy.2010.10.011

Google Scholar

[23] M. Conti, M. D. Beule, P. Mortier, D.V. Loo, P. Verdonck, F. Vermassen, P. Segers, F. Auricchio, B. Verhegghe, Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis, J. Mater. Eng. Perf, 18 (2009) 787–792.

DOI: 10.1007/s11665-009-9408-8

Google Scholar

[24] F. Auricchio and R.L. Taylor, Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior, Comput. Meth. Appl. Mech. Engrg, 143(2) (1997) 175-194.

DOI: 10.1016/s0045-7825(96)01147-4

Google Scholar

[25] F. Auricchio, R. Taylor, Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior, Comput. Methods Appl. Mech. Engrg, 143(1) (1996) 175–194.

DOI: 10.1016/s0045-7825(96)01147-4

Google Scholar

[26] N. Rebelo, N. Walker, H. Foadian, Simulation of implantable stents, In: Abaqus user's conference, 143 (2001) 421–434.

Google Scholar

[27] F.Nematzadeh and S.K. Sadrnezhaad, Effects of Material Properties on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis, Scientia Iranica B 19(6) (2012)1564-1571.

DOI: 10.1016/j.scient.2012.10.024

Google Scholar

[28] A.G. Prince, G.L. Quarini, J.E. Morgan, J. Finlay, Thermomechanical response of 50.7%Ni-Ti alloy in the pseudoelastic regime. Mater. Sci. Tech, 19 (2003) 561-565.

DOI: 10.1179/026708303225001948

Google Scholar

[29] W. Wu, M. Qi, X. Liu, D. Yang and W. Wang, Delivery and release of Nitinol stent in carotid artery and their interactions: a finite element analysis. J. Biomech, 40 (13) (2007) 3034-3040.

DOI: 10.1016/j.jbiomech.2007.02.024

Google Scholar

[30] H.V.D. Merwe, B. D. Reddy, P. Zilla, D. Bezuidenhout, T. Franz, A computational study of knitted Nitinol meshes for their prospective use as external vein reinforcement. J. Biomech, 41 (2008) 1302–1309.

DOI: 10.1016/j.jbiomech.2008.01.016

Google Scholar

[31] M. Salaheldin, S.P. Zilla, T. Franz, Computational Study of Structural Designs for a Small-Diameter Composite Vascular Graft Promoting Tissue Regeneration, Card. Engg .Tech, 1 (4) (2010) 269–281.

DOI: 10.1007/s13239-010-0023-5

Google Scholar

[32] V. Gideon, P. Kumar, L. Mathew, Finite Element Analysis of the Mechanical Performance of Aortic Valve Stent Designs, Trends Biomater. Artif. Organs, 23 (1) (2009) 16-20.

Google Scholar

[33] A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barneya, S.W. Robertson, Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater, 1 (2008) 153–164.

DOI: 10.1016/j.jmbbm.2007.08.001

Google Scholar

[34] M. Santillo, Fatigue and crack propagation study of a Superficial Femoral Artery Nitinol stent ,Ms Thesis, University of Pavia, Italy, (2008).

Google Scholar

[35] F. Auricchio, M. Conti, S. Morganti, A. Reali, Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment, Comp. Model. Engrg. Sci, 57 (3) (2010) 225-243.

Google Scholar

[36] R. Wang, K. Ravi-Chandar, Mechanical response of a metallic aortic stent – Part I: Pressure diameter relationship, J.Appl. Mech, 71 (2004) 697–705.

DOI: 10.1115/1.1782650

Google Scholar

[37] R. Wang, K. Ravi-Chandar, Mechanical response of a metallic aortic stent – Part II: A beam on elastic foundation model, J.Appl. Mech, 71 (2004) 706–712.

DOI: 10.1115/1.1782912

Google Scholar

[38] S. Canic, K. Ravi-Chandar, Z. Krajcer, D. Mirkovic, S. Lapin, Mathematical model analysis of Wallstent and AneuRx – dynamic responses of bare-metal endoprosthesis compared with those of stent-graft, Tex. Heart. I. J, 32 (4) (2005) 502–506.

Google Scholar