[1]
K. Hameed, H. Khan, R. Din, J. Khan, A. Rehman, M. Rashid, Self-Expandable metal stents in palliation of malignant esophageal obstruction. Gomal J. Med. Sci, 8 (2010) 39-43.
Google Scholar
[2]
D. Renteln, B. Walz, B. Riecken, T. Kayser, K. Caca, Endoscopic management of acute esophageal dissection by using a covered self-expanding metal stent, Gastro. Endoscopy 69 (2009) 577-580.
DOI: 10.1016/j.gie.2008.04.038
Google Scholar
[3]
D. Stoeckel, A.R. Pelton, T. Duerig, Self-expanding Nitinol stents: material and design considerations. Eur. Radio, 14 (2004) 292–301.
DOI: 10.1007/s00330-003-2022-5
Google Scholar
[4]
T.W. Duerig, D.E. Tolomeo, M. Wholey, An overview of superelastic stent Design. Min. Invas. Ther and Allied Technol, 9 (3/4) (2000) 235–246.
DOI: 10.3109/13645700009169654
Google Scholar
[5]
B. Patrick, B.S. Snowhill, L.N. John, L.S. Randall, H.S. Frederick, Characterization of Radial Forces in Z Stents. Inves. Radiology, 36 (9) (2001) 521–530.
Google Scholar
[6]
C. Kleinstreuer, Z. Li, C.A. Basciano, S. Seelecke, M.A. Farber, Computational mechanics of Nitinol stent grafts. J. Biomech, 41 (2008) 2370–2378.
DOI: 10.1016/j.jbiomech.2008.05.032
Google Scholar
[7]
K. Koop, D. Lootz, C. Kranz, C. Momma, B. Becher and M. Kieckbusch, Stent Material Ni tinol – Determination of Characteristics and Component Simulation Using the Finite Element Method, Prog. Biomed. Res, 6 (3) (2001) 237–245.
Google Scholar
[8]
K.W.K. Yeung, K.M.C. Cheung, W.W. Lu, C.Y. Chung, Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. Eng. A, 383 (2004) 213–218.
DOI: 10.1016/j.msea.2004.05.063
Google Scholar
[9]
M. Patel, D. Plumley and R. Bouthot, ASM Material and Process Conference and For Medical Devices Exposition (MPMD) Boston, MA November, (2005) 1-8.
Google Scholar
[10]
A.R. Pelton, T. Duerig and D. Stockel, A guide to shape memory and superelasticity in Nitinol medical devices, Min. Invas. Ther and Allied Technol, 13 (4) (2004) 218-221.
DOI: 10.1080/13645700410017236
Google Scholar
[11]
X. Liu, Y. Wang, D. Yang, M. Qi, The effect of ageing treatment on shape-setting and superelasticity of a Nitinol stent, Mater. Charact, 59 (2008) 402–406.
DOI: 10.1016/j.matchar.2007.02.007
Google Scholar
[12]
E. Henderson, D.H. Nash, W.M. Dempster, On the experimental testing of fine Nitinol wires for medical devices, J. Mech.Behav. Biomed. Mater, 4 (2011) 261-268.
DOI: 10.1016/j.jmbbm.2010.10.004
Google Scholar
[13]
Y. Liu, P. Galvin, for pseudoelasticity in near-equiatomic NiTi shape memory alloys, Acta Mater, 45 (11) (1997) 4431–4439.
DOI: 10.1016/s1359-6454(97)00144-4
Google Scholar
[14]
A.R. Pelton, J. DiCello, S. Miyazaki, Optimization of processing and properties of medical grade Nitinol wire, Min. Invas. Ther and Allied Technol, 9 (1) (2000) 107–108.
DOI: 10.3109/13645700009063057
Google Scholar
[15]
K. Otsuka, T. Kakeshita, Science and technology of shape memory alloys: new developments, MRS Bull, 27 (2002) 91–98.
DOI: 10.1557/mrs2002.43
Google Scholar
[16]
J. Khalil-Allafi, G. Eggeler, A. Dlouhy, W. Schmahl, C. Somsen, on the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy, Mater. Sci. Eng. A, 378 (2004) 148–151.
DOI: 10.1016/j.msea.2003.10.335
Google Scholar
[17]
G. Silber, M. Alizadeh, A. Aghajani, Finite element analysis for the design of self-expandable Nitinol stent in an artery. I. J. Energ. Tech, 2 (19) (2010) 1–7.
Google Scholar
[18]
M. De. Beule, S.V. Cauter, P. Mortier, D.V. Loo, R.V. Impec, P. Verdonck, B. Verhegghe, Virtual optimization of self-expandable braided wire stents , Med. Eng. Phys, 31 (2009) 448–453.
DOI: 10.1016/j.medengphy.2008.11.008
Google Scholar
[19]
F.D. Whitcher, Simulation of in vivo loading conditions of Nitinol vascular stent structures, Comput. Struct, 64 (5-6) (1997) 1005-1011.
DOI: 10.1016/s0045-7949(97)00014-x
Google Scholar
[20]
L. Petrini, F. Migliavacca, P. Massarotti, S. Schievano, G. Dubini, F. Auricchio, Computational studies of shape memory alloy behavior in biomedical applications, J. Biomech.Eng, 127 (2005) 716-725.
DOI: 10.1115/1.1934203
Google Scholar
[21]
P. Terriault, V. Brailovski, R .Gallo, Finite element modeling of a progressively expanding shape memory stent, J. Biomech, 39 (15) (2006) 2837-2844.
DOI: 10.1016/j.jbiomech.2005.09.018
Google Scholar
[22]
F. Auricchio, M. Conti, M.De. Beule, G.De. Santis, B. Verhegghe, Carotid artery stenting simulation: From patient-specific images to finite element analysis, Med. Eng. Phys, 33 (2011) 281-289.
DOI: 10.1016/j.medengphy.2010.10.011
Google Scholar
[23]
M. Conti, M. D. Beule, P. Mortier, D.V. Loo, P. Verdonck, F. Vermassen, P. Segers, F. Auricchio, B. Verhegghe, Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis, J. Mater. Eng. Perf, 18 (2009) 787–792.
DOI: 10.1007/s11665-009-9408-8
Google Scholar
[24]
F. Auricchio and R.L. Taylor, Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior, Comput. Meth. Appl. Mech. Engrg, 143(2) (1997) 175-194.
DOI: 10.1016/s0045-7825(96)01147-4
Google Scholar
[25]
F. Auricchio, R. Taylor, Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior, Comput. Methods Appl. Mech. Engrg, 143(1) (1996) 175–194.
DOI: 10.1016/s0045-7825(96)01147-4
Google Scholar
[26]
N. Rebelo, N. Walker, H. Foadian, Simulation of implantable stents, In: Abaqus user's conference, 143 (2001) 421–434.
Google Scholar
[27]
F.Nematzadeh and S.K. Sadrnezhaad, Effects of Material Properties on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis, Scientia Iranica B 19(6) (2012)1564-1571.
DOI: 10.1016/j.scient.2012.10.024
Google Scholar
[28]
A.G. Prince, G.L. Quarini, J.E. Morgan, J. Finlay, Thermomechanical response of 50.7%Ni-Ti alloy in the pseudoelastic regime. Mater. Sci. Tech, 19 (2003) 561-565.
DOI: 10.1179/026708303225001948
Google Scholar
[29]
W. Wu, M. Qi, X. Liu, D. Yang and W. Wang, Delivery and release of Nitinol stent in carotid artery and their interactions: a finite element analysis. J. Biomech, 40 (13) (2007) 3034-3040.
DOI: 10.1016/j.jbiomech.2007.02.024
Google Scholar
[30]
H.V.D. Merwe, B. D. Reddy, P. Zilla, D. Bezuidenhout, T. Franz, A computational study of knitted Nitinol meshes for their prospective use as external vein reinforcement. J. Biomech, 41 (2008) 1302–1309.
DOI: 10.1016/j.jbiomech.2008.01.016
Google Scholar
[31]
M. Salaheldin, S.P. Zilla, T. Franz, Computational Study of Structural Designs for a Small-Diameter Composite Vascular Graft Promoting Tissue Regeneration, Card. Engg .Tech, 1 (4) (2010) 269–281.
DOI: 10.1007/s13239-010-0023-5
Google Scholar
[32]
V. Gideon, P. Kumar, L. Mathew, Finite Element Analysis of the Mechanical Performance of Aortic Valve Stent Designs, Trends Biomater. Artif. Organs, 23 (1) (2009) 16-20.
Google Scholar
[33]
A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barneya, S.W. Robertson, Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater, 1 (2008) 153–164.
DOI: 10.1016/j.jmbbm.2007.08.001
Google Scholar
[34]
M. Santillo, Fatigue and crack propagation study of a Superficial Femoral Artery Nitinol stent ,Ms Thesis, University of Pavia, Italy, (2008).
Google Scholar
[35]
F. Auricchio, M. Conti, S. Morganti, A. Reali, Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment, Comp. Model. Engrg. Sci, 57 (3) (2010) 225-243.
Google Scholar
[36]
R. Wang, K. Ravi-Chandar, Mechanical response of a metallic aortic stent – Part I: Pressure diameter relationship, J.Appl. Mech, 71 (2004) 697–705.
DOI: 10.1115/1.1782650
Google Scholar
[37]
R. Wang, K. Ravi-Chandar, Mechanical response of a metallic aortic stent – Part II: A beam on elastic foundation model, J.Appl. Mech, 71 (2004) 706–712.
DOI: 10.1115/1.1782912
Google Scholar
[38]
S. Canic, K. Ravi-Chandar, Z. Krajcer, D. Mirkovic, S. Lapin, Mathematical model analysis of Wallstent and AneuRx – dynamic responses of bare-metal endoprosthesis compared with those of stent-graft, Tex. Heart. I. J, 32 (4) (2005) 502–506.
Google Scholar